Abstract

Constructing high-quality homojunctions plays a pivotal role for the advancement of two-dimensional transition metal sulfide (TMDC) based optoelectronic devices. Here, a lateral PdSe2 p-i-n homojunction is constructed by electrostatic doping. Electrical measurements reveal that the homojunction diode exhibits a strong rectifying characteristic with a rectification ratio exceeding 104 and an ideality factor approaching 1. When functioning in photovoltaic mode, the device achieves a high responsivity of 1.1 A/W under 1064 nm illumination, with a specific detectivity of 1.3 × 1011 Jones and a high linearity of 45 dB. Benefiting from the lateral p-i-n structure, the junction capacitance is significantly reduced, and an ultrafast response (3/6 μs) is obtained. Additionally, the photodiode has the capability of polarization distinction due to the unique in-plane anisotropic structure of PdSe2, exhibiting a dichroic ratio of 1.6 at a 1064 nm wavelength. This high-performance polarization-sensitive near-infrared photodetector exhibits great potential in the next-generation optoelectronic applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.