Since retrofitting existing natural gas-fired (NGF) power plants is an essential strategy for enhancing their efficiency and controlling greenhouse gas emissions, this paper compares the carbon footprint of natural gas-fired power generation from an NGF power plant in Brazil (BR-NGF) with and without retrofitting. The former scenario entails retrofitting the BR-NGF power plant with combined-cycle gas turbine (CCGT) technology. In contrast, the latter involves continuing the BR-NGF power plant operation with open-cycle gas turbine (OCGT) technology. Our analysis considers the BR-NGF power plant’s life cycle (construction, operation, and decommissioning) and the natural gas’ life cycle (natural gas extraction and processing, liquefaction, liquefied natural gas transportation, regasification, and combustion). Moreover, it is based on data from primary and secondary sources, mainly the Ecoinvent database and the ReCiPe 2016 method. For OCGT, the results showed that the BR-NGF power plant and the natural gas life cycles are responsible for 620.87 gCO2eq./kWh and 178.58 gCO2eq./kWh, respectively. For CCGT, these values are 450.04 gCO2eq./kWh and 129.30 gCO2eq./kWh. Our findings highlight the relevance of the natural gas’ life cycle, signaling additional opportunities for reducing the overall carbon footprint of natural gas-fired power generation.