Abstract Whole rock compositions at Buldir Volcano, western Aleutian arc, record a strong, continuous trend of iron depletion with decreasing MgO, classically interpreted as a calc-alkaline liquid line of descent. In contrast, olivine-hosted melt inclusions have higher total iron (FeO*) than whole rocks and show little change in FeO* with decreasing MgO. To investigate this discrepancy and determine the conditions required for strong iron depletion, we conducted oxygen fugacity (ƒO2) buffered, water-saturated crystallization experiments at 800 MPa and ƒO2 = QFM+1.6 ± 0.4 (1$\sigma$) (where QFM refers to the quartz-fayalite-magnetite buffer) on a high-Al, basaltic starting material modeled after a Buldir lava. Experimental conditions were informed by olivine-hosted melt inclusions that record minimum entrapment pressures as high as 570 MPa, >6 wt.% H2O, and ƒO2 of QFM+1.4 (±0.2), making Buldir one of the most oxidized and wettest arc volcanoes documented globally. The experiments produce melts with Si-enrichment and Fe-depletion signatures characteristic of evolved, calc-alkaline magmas at the lowest MgO, although FeO* remains roughly constant over most of the experimental temperature range. Experiments saturate CrAl-spinel and olivine at 1160oC, followed by clinopyroxene and Al-spinel at 1085oC, hornblende at 1060oC, and, finally, plagioclase and magnetite between 1040oC and 960oC. Hornblende crystallization, not magnetite, generates the largest increase in SiO2 and largest decrease in FeO* in coexisting melts. Compositions of melt inclusions are consistent with experimental melts and reflect crystallization of a basaltic parent magma at high PH2O. In contrast, the whole rock compositional trends are influenced by magma mixing and phenocryst redistribution and accumulation. The crystallization experiments and natural liquids (melt inclusions and groundmass glass) from Buldir suggest that for an oxidized, hydrous primary basalt starting composition, significant Fe-depletion from the melt will not occur until intermediate to late stages of magma crystallization (< ~4.5 wt.% MgO). We conclude that the Buldir whole rock trend cannot be reproduced by crystallization at arc-relevant oxygen fugacities and is not a true liquid line of descent, warranting caution when interpreting volcanic trends globally.
Read full abstract