1 Present address: National Institute for Medical Research, Mill Hill, London NW7 1AA, UK 2 Present address: Station SCRIBE-Inra. Laboratoire de Physiologie des Poissons, Campus de Beaulieu, 35042 Rennes cedex, France 3 Present address: Novartis Institutes for Biomedical Research, 100 Technology Square, Cambridge, MA, USA In humans, mutations of the gene encoding the transcription factor Nkx2-5 result in the heart in electrical conduction defects and morphological abnormalities. In this organ Nkx2-5 is expressed in both the myocardium and the endocardium. Connexins (Cxs) are gap junction channel proteins that have been shown to be involved in both heart development and cardiac electrical conduction, suggesting a possible correlation between expression of Cxs and Nkx2-5. To evaluate this correlation, the expression of Cxs has been investigated in the cardiovascular system of wild-type and Nkx2-5–/– 9.2 days post-conception (dpc) mouse embryos. The disruption of the Nkx2-5 gene results in the loss of Cx43 in the heart, due in part to the poor development of the ventricular trabecular network, as well as specific downregulation of Cx45 gene expression. In addition, the nuclear translocation of NFATc1 in the endocardial endothelial cells is inhibited in the Nkx2-5–/– embryos. These results indicate for the first time that Nkx2-5 is involved in the transcriptional regulation of the Cx45 gene expression. In the mutant embryos the aorta is collapsed, and the vascular endothelial Cxs, Cx40 and Cx37, are no longer expressed in its posterior region. Poor development of the trabeculae and downregulation of Cx45 may contribute both to failure of the myocardial function and to hemodynamic insufficiency. The latter, in turn, may result in the dysregulation of Cx40 and -37 expressions along the whole length of the aorta. Direct or indirect effects of Nkx2-5 inactivation on the Cx45 gene expression could explain the absence of the endocardial cushions in the heart of Nkx2-5–/– embryos.
Read full abstract