Chalcopyrite (CuFeS2) has attracted interest as a thermoelectric material due to its narrow bandgap and its ability to tailor its carrier concentration through doping. In this study, we investigated the effects of Ni2+ substitution at Cu+ sites in chalcopyrite (Cu1−xNixFeS2) on its structural, microstructural, and thermoelectric properties. Samples were synthesized using mechanical alloying followed by hot pressing to ensure high-density compaction. X-ray diffraction analysis confirmed the formation of the tetragonal chalcopyrite phase without detectable secondary phases. The observed reduction in lattice parameters with increasing Ni content provided evidence of successful Ni incorporation at Cu sites within the chalcopyrite structure. Microstructural analysis and elemental mapping further supported the uniform distribution of Ni within the chalcopyrite matrix. Thermoelectric property measurements revealed that Ni-doped chalcopyrite exhibited n-type conduction. As the Ni concentration increased, the carrier concentration and electrical conductivity increased significantly, with Cu0.92Ni0.08FeS2 achieving the highest electrical conductivity of 2.5 × 104 Sm−1 at 723 K. However, the absolute value of the Seebeck coefficient decreased with increasing Ni doping, following the expected trade-off between electrical conductivity and thermopower. The optimized composition, Cu0.96Ni0.04FeS2, exhibited the highest thermoelectric performance, with a power factor of 0.50 mWm−1K−2 and a maximum dimensionless figure of merit (ZT) of 0.18 at 623 K. Compared to undoped chalcopyrite, these enhancements represent a 43% increase in power factor and a 50% improvement in ZT.
Read full abstract- All Solutions
Editage
One platform for all researcher needs
Paperpal
AI-powered academic writing assistant
R Discovery
Your #1 AI companion for literature search
Mind the Graph
AI tool for graphics, illustrations, and artwork
Journal finder
AI-powered journal recommender
Unlock unlimited use of all AI tools with the Editage Plus membership.
Explore Editage Plus - Support
Overview
9801 Articles
Published in last 50 years
Articles published on Narrow Band Gap
Authors
Select Authors
Journals
Select Journals
Duration
Select Duration
9624 Search results
Sort by Recency