Several chromophores with donor–acceptor properties and containing a carboxylic or sulfonic group [coumarin-3-carboxylic acid (3-CCA), 9-anthracenecarboxylic acid (9-ACA), 4-benzoylbenzoic acid (4-BBA) and 2-naphthalenesulfonic acid (2-NSA)] have been intercalated into Mg–Al hydrotalcite-like compounds, both via anion exchange procedures and by using the “memory effect” of the hydrotalcites. The obtained intercalation compounds have been characterised by X-ray diffractometry, thermal analysis and chemical composition. Data obtained indicate that the guest species are accommodated in the interlayer region as a monofilm of interdigitaded anions with the C–COO− or C–SO3− bond almost perpendicular to the layer plane. The pairs of chromophores investigated, 3-CCA–9-ACA and 4-BBA–2-NSA, can give rise to energy transfer processes because of the characteristics of their excited states. Co-intercalation of the above-mentioned pairs of chromophores has been achieved with different synthetic procedures. The mono-intercalated and co-intercalated systems were investigated by absorption and emission spectroscopy and by laser flash photolysis. The absorption spectrum of MgAl-9-ACA shows an unexpected band around 490 nm that was attributed to an aggregate. The fluorescence characteristics of the various co-intercalated samples depend on the excitation wavelength and on the preparation methods, which control the relative amounts of the two fluorophores in the interlayer region. In all the samples containing 9-ACA excitation around 500 nm generates an emission attributed to the anthracene aggregate. In mono-intercalated and co-intercalated samples, the fluorescence decays satisfactorily fit bi-exponential and tri-exponential functions, respectively. Laser flash photolysis experiments showed that excitation of the intercalated chromophores produces transients which can be attributed to the guest triplets and, in the case of co-intercalated 4-BBA–2-NSA composite, the probable occurrence of an energy transfer process.
Read full abstract