Abstract

Recently, an apparently novel, specific endothelin-1 inactivating metalloendopeptidase (ET-1 peptidase) has been isolated from the rat kidney. In this study we attempted to determine whether the same or a similar peptidase is present in the human kidney, and whether the enzyme is excreted into the urine. The urinary ET-1 peptidase could serve as an indirect index of the renal endothelin system, both in physiology and pathophysiology. Kidney specimens were obtained from part of nephrectomized kidneys unaffected by any neoplastic process from six adult patients. The enzyme was purified using differential centrifugation, detergent solubilization of the membrane proteins, ultrafiltration and nondenaturing gel electrophoresis. The enzyme activity assays were performed at pH 5.5 and 37 degrees C in the presence of increasing concentrations of unlabelled peptides and inhibitors using a fixed amount of [125I]ET-1 as substrate. The degradation extent was quantified with trichloroacetic acid precipitation and high performance liquid chromatography. The degrading activity of ET-1 was determined in urine samples from adult patients with hypertension, children with chronic renal failure and those with stable renal allograft ET-1 peptidase from the human kidney displays characteristics close to that of the rat ET-1 peptidase we have recently described (J. Hypertens 1994; 12:1155-1162). The enzyme, a membrane-bound metalloendopeptidase, exhibits low electro- phoretical mobility on nondenaturing gel (Rf 0.08); it is an apparently heterologous structure comprising three enzymatically inactive subunits, it has a pH optimum at 5.5, a nanomolar range affinity to the ET-1 (KM 180 nmol/l) that is hydrolysed to two main degradation products, and a 10-100-fold lower affinity to big ET-1 (KM 11.5 micromol/l), endothelin 11 21 fragment (KM 15.3 micromol/l), endothelin antagonist Trp-Leu-Asp-Ile-Ile-Trp (KM 3.1 micromol/I), gastrin (KM 2.2 micromol/l) and cholecystokinin (KM 4.0 micromol/l). Substance P, neuropeptide Y, atrial natriuretic peptide, bradykinin, angiotensin II and enkephalin were poor substrates for the enzyme. The most powerful inhibitors of the ET-1 peptidase included thiorphan (IC50 0.28 nmol/l), phosphoramidon (IC50 0.55 nmol/l), phenanthroline (IC50 11.5 micromol/l), cyclosporin (IC50 400 micromol/l), phosphate (IC50 1.2 mmol/l), citrate (IC50 0.6 mmol/l) and aniline naphthalene sulphonic acid (IC50 0.25 mmol/l). Our data suggest that three ET-1 degrading peptidases with optimal activity at pH 4.5, 5.5 and 7.0, respectively, are excreted into the urine. The enzyme with a pH optimum 4.5 is of lysosomal origin whereas the two other enzymes correspond by their pH optima to the renal ET-1 peptidase and neutral endopeptidase. We have found statistically significant increases (P < 0.001) in the activity of both lysosomal and ET-1 peptidase in the urine in patients with hypertension and in children with chronic renal failure compared with healthy subjects or children with stable renal allograft Human kidney contains an acidic, highly specific endothelin-1 inactivating metalloendopeptidase that may have a key role in the regulation of concentrations of renal and circulating endothelins. The enzyme is excreted into the urine where its activity seems to be increased in patients with hypertension and chronic renal failure; it may potentially serve as an indirect index of the renal endothelin system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.