Nano-enzymatic catalytic therapy has been widely explored as a promising tumor therapeutic method with specific responsiveness to the tumor microenvironment (TME). However, the inherent lower and simplex catalytic efficiency impairs their anti-tumor efficacy. Therefore, developing novel nanozymes with relatively high and multiple catalytic characteristics, simultaneously enhancing the enzyme-like activity of nanozymes using the proper method, photothermal promoted catalytic property, is a reliable way. In this paper, we report a manganese oxide/nitrogen-doped carbon composite nanoparticles (MnO-N/C NPs) with multi-enzyme mimetic activity and photothermal conversional effect. The peroxidase (POD)-like/oxidase (OXD)-like/catalase (CAT)-like activity of MnO-N/C nanozymes was accelerated upon exposure to an 808 nm NIR laser. In vitro and in vivo results proved that the MnO-N/C NPs shown excellent magnetic resonance imaging (MRI) guided synergistic photothermal-enhanced catalytic treatment and photothermal therapy of liver cancer. The photothermal enhanced multi-enzyme activity maximizes the efficacy of catalytic and photothermal therapy while reducing harm to healthy cells, thereby offering valuable insights for the development of next-generation photothermal nanozymes to enhance tumor therapy.
Read full abstract