To obtain a highly linearly polarized light, a composite model consisting of white light emission, anti-reflection film, and metal-dielectric-metal nanowire grating was designed, analyzed, optimized, and fabricated. Based on the finite-difference time-domain method, the impacts of material, period, height, and incidence angle on the polarization performance of the composite model were discussed. The metal-dielectric-metal nanowire grating was fabricated on blue chip and fluorescent ceramics using nanoimprint technology. The employed materials of metal-dielectric-metal nanowire grating were aluminum and PMMA, with the period of 200 nm, wire width of 100 nm, and the height of metal and dielectric were 100 nm and 120 nm. Additionally, the anti-reflection film consisting of PMMA with the thickness of 45 nm was incorporated on fluorescent ceramics to enhance energy efficiency. Finally, through a series of test experiments, the composite model can be realized by the extinction ratio of 40 dB, while the transmittance of TM mode exceeds 50% at 450–750 nm. The theoretical analysis of this study is verified by experiments, and it has significant potential in the pursuit of high brightness, ultra-thin micro displays.