Abstract

AbstractOptical metamaterials have revolutionized imaging capabilities by manipulating light‐matter interactions at the nanoscale beyond the diffraction limit. Bilayer nanowire grating configurations exhibit significant potential as exceptional elements for high‐performance polarimetric imaging systems. However, conventional computational approaches for predicting electromagnetic responses are time‐consuming and labor‐intensive, and thereby, the practical implementation remains challenging through an iterative design, analysis, and fabrication process. Here, a deep learning‐based design process is presented utilizing an artificial neural network (ANN) trained on finite element method (FEM) simulations that enables the prediction of bilayer nanowire gratings‐based electromagnetic responses. The study validates predictions through nanoimprinted bilayer nanowire gratings, demonstrating the reliability of the ANN's predictions. Furthermore, the research identifies critical geometric parameters significantly influencing transverse magnetic (TM) and transverse electric (TE) transmission. The ANN model effectively tailors design for specific mid‐wavelength infrared (MWIR) wavelengths, which may provide a practical tool for rapidly designing and optimizing metamaterial for high‐performance polarizers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.