This paper comprehensively discusses the fabrication of bionic-based ultrafast laser micro-nano-multiscale surface structures and their performance analysis. It explores the functionality of biological surface structures and the high adaptability achieved through optimized self-organized biomaterials with multilayered structures. This study details the applications of ultrafast laser technology in biomimetic designs, particularly in preparing high-precision, wear-resistant, hydrophobic, and antireflective micro- and nanostructures on metal surfaces. Advances in the fabrications of laser surface structures are analyzed, comparing top-down and bottom-up processing methods and femtosecond laser direct writing. This research investigates selective absorption properties of surface structures at different scales for various light wavelengths, achieving coloring or stealth effects. Applications in dirt-resistant, self-cleaning, biomimetic optical, friction-resistant, and biocompatible surfaces are presented, demonstrating potential in biomedical care, water-vapor harvesting, and droplet manipulation. This paper concludes by highlighting research frontiers, theoretical and technological challenges, and the high-precision capabilities of femtosecond laser technology in related fields.
Read full abstract