Polymeric micelles have widely been used as drug delivery carriers, and recently, single-chain nanoparticles (SCNPs) emerged as potential, smaller-sized, alternatives. In this work, we are comparing both NPs side by side and evaluate their ability to be internalized by breast cancer cells (MCF-7) and macrophages (RAW 264.7). To be able to generate these NPs on demand, the polymers were assembled by flow, followed by the stabilization of the structures by photocross-linking using blue light. The central aim of this work is to evaluate how the type of solvent affects self-assembly and ultimately the structure of the final NP. Therefore, a library of copolymers with different sequences, including block copolymers (AB, ABA, BAB), and statistical copolymers (rAB and rAC) was synthesized using PET-RAFT with A denoting poly(ethylene glycol) methyl ether acrylate (PEGMEA), B as 2-hydroxyethyl acrylate (HEA), and C as 4-hydroxybutyl acrylate (HBA). The polymers were conjugated with a quinoline derivative to enable the formation of cross-linked structures by photocross-linking during flow assembly. Using water as the dispersant for photocross-linking led to the preassembly of these amphiphilic polymers into compact SCNPs and cross-linked micelles, resulting in a quick photoreaction. In contrast, acetonitrile led to fully dissolved polymers but a low rate of the photoreaction. These intramolecularly cross-linked polymers were then placed in water to result in more dynamic micelles and looser SCNPs. Small-angle X-ray scattering (SAXS), dynamic light scattering (DLS), and size exclusion chromatography (SEC) coupled with a viscosity detector show that cross-linking in acetonitrile results in better-defined NPs with a shell rich in PEGMEA. Cross-linking in acetonitrile led to NPs with significantly higher cellular uptake. Interestingly, passive transport was identified as the main pathway for the delivery of our NPs on MCF-7 cells, confirmed by the uptake of NPs on cells treated with inhibitors and by red blood cells. This work underscored the importance of the polymer precursor's structure and the choice of solvent during intramolecular cross-linking in determining the drug delivery efficiency and biological behavior of SCNPs.