Abstract

The magnetoelectric (ME) effect, which involves the interaction of magnetic and electric fields within a material, has a significant potential for various applications. Our study addresses the limitations of conventional magnetostriction-based ME materials by demonstrating an alternative approach that achieves substantial ME effects in core-shell-type nanocomposites at room temperature. By synthesizing ferrimagnetic Fe3O4 nanoparticles onto piezoelectric poly(vinylidene fluoride) (PVDF) particles, we identified a distinct ME mechanism. In magnetorheological (MR) fluids, the magnetic-field-induced aggregation of Fe3O4 nanoparticles, combined with the piezoelectricity of PVDF, leads to a pronounced ME effect, significantly enhancing the performance and stability of MR fluids. This research highlights a crucial observation of distinct ME effects, which could suggest potential pathways for advancements in practical applications including microfluidics, vibration dampers, tactile technologies, and biomedical and bioengineering fields.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.