Bimetallic Ni-Cr nano-oxide catalysts were synthesized by thermal decomposition method and were investigated as the anode electrocatalysts for the oxidation of methanol. The catalysts were characterized by X-ray diffraction and transmission electron microscopy. The electroactivity of the catalysts towards methanol oxidation in a solution containing 0.25 M NaOH and 1.0 M MeOH was examined using cyclic voltammetry and chronoamperometry. The results indicate that a mixture of rhombohedral-structured NiO and Cr2O3 nanocrystals generated at the calcination temperature of 500-700 degrees C while octahedral-structured spinel NiCr2O4 formed at higher temperature. The influence of metallic molar ratio on the electrocatalytic performance of the catalysts was studied. The Ni-Cr nano-oxides prepared at comparatively low temperature displayed significantly higher catalytic activity and durability in alkaline solution toward electrooxidation of methanol compared with the pure nano NiO. The results indicate a synergy effect between NiO and Cr2O3 enhancing the electrocatalytic properties of the bimetallic Ni-Cr nano-oxide catalysts. Meanwhile, NiCr2O4 hardly increased the activity and durability of the catalyst. In addition, the Ni-Cr catalyst also exhibited excellent stability and good reproducibility. Therefore, Ni-Cr nano-oxide catalyst may be a suitable and cheap electrocatalyst for methanol oxidation in alkaline medium.