Son yıllarda biyomedikal sinyal işleme alanındaki gelişmelere rağmen, akciğer rahatsızlıklarının tespiti üzerine hızlı ve yüksek doğrulukta çalışan teşhis sistemlerine duyulan ihtiyaç artmaktadır. Yapılan çalışmada fiziki muayene ile 94 farklı kişiden, solunum döngülerinin otomatik olarak tespit edilmesiyle elde edilen 150 adet normal ve 444 adet normal olmayan akciğer sesleri veri tabanı olarak kullanılmıştır. Sınıflandırma işleminde öznitelik olarak frekans ve zaman bölgesinde 12 farklı yöntem uygulanmıştır. Tüm veriler %80 eğitim %20 test aşamasında kullanılacak şekilde ikiye bölünmüştür. Elde edilen öznitelikler gömülü ve sarıcı öznitelik seçim yöntemleri kullanılarak değerlendirilmiştir. Bu yöntemler; özyinelemeli öznitelik eliminasyonu, uyarlanabilir yapı öğrenimi ile öznitelik seçimi, bağımlılık kılavuzlu denetimsiz öznitelik seçimi, sıralı yerellik ile denetimsiz öznitelik seçimi, içbükey küçültme yoluyla öznitelik seçimi, en küçük mutlak büzülme ve seçim operatörü öznitelik seçim yöntemleri olarak isimlendirilmektedir. İncelenen bu öznitelikler doğrusal destek vektör makineleri, k en yakın komşuluk, karar ağaçları ve naive bayes yöntemleri ile sınıflandırılmıştır. Sonuç olarak öznitelik sayısının sınırlandırılmadığı durum için, özyinelemeli öznitelik eliminasyonu yönteminin k en yakın komşuluk sınıflandırma ile beraber kullanıldığı durum için %97,3 doğruluk değerindeki başarıma ulaşılmaktadır. Öznitelik sayısının üç ile sınırlandırıldığı durumda ise uyarlanabilir yapı öğrenimi ile öznitelik seçimi yönteminin karar ağaçları yöntemi ile beraber kullanılması ile %91,4 değerinde başarıma ulaşılmıştır.
Read full abstract