We demonstrated that Mas1 and ET B R physically interact in endothelial cells inducing Ang-(1-7) vascular protection. Using high throughput screening of >20,000 druggable compounds, we identified a number of molecules that enhance Mas1:ET B R interactions. Of these, 2 potently enhanced interaction between the receptors. These enhancers (Enh), termed Enh3 and Enh4 were used to assess Mas1:ET B R interaction and cellular functional responses in vascular smooth muscle cells (VSMCs) from normotensive WKY and hypertensive SHRSP rats. Cells were exposed to Enh 3 and Enh4 (10 -5 M) for short (5,15 and 30min) and long timepoints (5hours). Expression of signaling molecules was assessed by immunoblotting and Ca 2+ influx was evaluated using fluorescence microscopy. In WKY VSMCs, Enh 3 short term stimulation reduced basal ERK1/2 phosphorylation (26.8±5.9% vs veh, p<0.01), an effect absent in SHRSP VSMCs, while Enh 4 had no effect. Short term exposure to Enh 4, but not Enh3, reduced basal MLC20 phosphorylation (54.9±7.5% vs veh, p<0.001) in WKY but not in SHRSP VSMCs. In SHRSP VSMCs, Enh 3, but not Enh4, reduced basal AKT phosphorylation (63.5±8.9% vs veh, p<0.001). Long term stimulation with Enh 3 reduced expression of AKT (38.0±2.0% vs veh, p<0.001), PCNA (60.0±7.0% vs veh, p<0.001), and VCAM-1 (35.0±8.0% vs veh, p<0.001) in WKY VSMCs. Similarly, AKT (35.0±12.0% vs veh, p<0.05) expression was reduced by Enh 3, with no effect on other markers in SHRSP VSMCs. Enh 4 long-term stimulation reduced AKT expression (30.0±10.0% vs veh, p<0.05) in WKY VSMCs, without effect on SHRSP VSMCs. ET-1 induced Ca 2+ influx in WKY and SHRSP VSMCs was unaffected by Enh3 and Enh4. In conclusion, enhancing Mas1:ET B R interaction attenuates mitogenic and pro-inflammatory signaling pathways in WKY and SHRSP VSMCs. Enhancing interaction between these receptors does not increase Ca 2+ signaling, important in VSMC contraction. Our data suggest that Enh3 and Enh4 may have VSMC protective effects and that they do not amplify injurious signaling induced by ET-1/ETBR. These findings identify a potential new strategy in vasoprotection.