Abstract
Vascular hyporesponsiveness in the shock decompensation period is an important factor leading to death. Myosin light chain 20 (MLC20) is the main effector protein that regulates vascular reactivity. However, whether the change in semicarbazide-sensitive amine oxidase (SSAO) expression during hypoxia can change the MLC20 phosphorylation level, and its underlying mechanism were not clear. The amine oxidase copper containing 3 (AOC3) overexpressing adenovirus vector was constructed and transfected into rat intestinal microvascular endothelial cells (RIMECs) to overexpress SSAO, and the RIMECs were co-cultured with rat intestinal microvascular smooth muscle cells (RIMSCs). The changes in SSAO/inducible nitric oxide synthase (iNOS)/Rho associate coiled-coil containing protein kinase 1 (ROCK1) expression levels and MLC20 phosphorylation level were detected. Here we found that the increased SSAO by AOC3 overexpression can decrease the iNOS expression level and its activity after hypoxia. In addition, RIMSCs co-cultured with RIMECs overexpressed with AOC3 gene had significantly higher ROCK1 protein level and MLC20 phosphorylation level than RIMSCs co-cultured with normal RIMECs. Our study demonstrated that SSAO overexpression can significantly inhibit iNOS activity, promote RhoA/ROCK pathway activation, and increase the phosphorylation level of MLC20, which might be the potential mechanism in relieving the vascular hyporesponsiveness during shock decompensation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.