ObjectiveTo evaluate the application value of nucleotide matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS) technology in the rapid diagnosis of pulmonary tuberculosis (PTB) and its drug resistance. MethodsFrom February 2021 to January 2022, respiratory specimens from 214 suspected PTB patients at the First Hospital of Quanzhou were collected. Nucleotide MALDI-TOF-MS and BACTEC MGIT 960 culture methods were used for the detection of Mycobacterium tuberculosis (MTB) and drug resistance to anti-tuberculosis drugs. ResultsCompared with culture method, nucleotide MALDI-TOF-MS technology had a sensitivity, specificity, and accuracy of 92.2%, 74.1%, and 82.7%, respectively, for the detection of MTB in respiratory specimens. With clinical diagnosis as the reference standard, the sensitivity and accuracy of nucleotide MALDI-TOF-MS were 82.5% and 86.0%, respectively, which were higher than those of the culture method (69.2% and 78.0%, respectively). The specificity of nucleotide MALDI-TOF-MS was 93.0%, which was slightly lower than that of culture method (95.8%). As for drug resistance, the results of nucleotide MALDI-TOF-MS exhibited good consistence with culture methods for rifampin, isoniazid, ethambutol, and streptomycin. ConclusionNucleotide MALDI-TOF-MS detection has a good clinical performance for rapid detection of MTB and drug sensitivity to rifampin, isoniazid, ethambutol, and streptomycin directly on respiratory specimens.