Prior studies of muscle blood flow and muscle-specific oxygen consumption have required invasive injection of dye and magnetic resonance imaging, respectively. Such measures have limited utility for continuous monitoring of the respiratory muscles. Frequency-domain near-infrared spectroscopy and diffuse correlation spectroscopy (FD-NIRS & DCS) can provide continuous surrogate measures of blood flow index (BFi) and metabolic rate of oxygen consumption (MRO2). This study aimed to validate sternocleidomastoid FD-NIRS & DCS outcomes against electromyography (EMG) and mouth pressure (Pm) during incremental inspiratory threshold loading (ITL). Six female and six male healthy adults (means ± SD; 30 ± 7 yr, maximum inspiratory pressure 118 ± 61 cmH2O) performed incremental ITL starting at low loads (8 ± 2 cmH2O) followed by 50-g increments every 2 min until task failure. FD-NIRS & DCS continuously measured sternocleidomastoid oxygenated and deoxygenated hemoglobin + myoglobin (oxy/deoxy[Hb + Mb]), tissue saturation of oxygen (StO2), BFi, and MRO2. Ventilatory parameters including inspiratory Pm were also evaluated. Pm increased during incremental ITL (P < 0.05), reaching -47[-74 to -34] cmH2O (median [IQR: 25%-75%]) at task failure. Ventilatory parameters were constant throughout ITL (all P > 0.05). Sternocleidomastoid BFi and MRO2 increased from the start of the ITL (both P < 0.05). Deoxy[Hb + Mb] increased close to task failure, concomitantly with a constant increase in MRO2, and decreased StO2. Sternocleidomastoid deoxy[Hb + Mb], BFi, StO2, and MRO2 obtained during ITL via FD-NIRS & DCS correlated with sternocleidomastoid EMG (all P < 0.05). In healthy adults, FD-NIRS & DCS can provide continuous surrogate measures of respiratory BFi and MRO2. Increasing sternocleidomastoid oxygen consumption near task failure was associated with increased oxygen extraction and reduced tissue saturation.NEW & NOTEWORTHY This study introduces a novel approach, frequency-domain near-infrared spectroscopy and diffuse correlation spectroscopy (FD-NIRS & DCS), for noninvasive continuous monitoring of respiratory muscle blood flow and metabolic rate of oxygen consumption. Unlike prior methods involving invasive dye injection and magnetic resonance imaging, FD-NIRS & DCS offers the advantage of continuous measurement without the need for invasive procedures. It holds promise for advancing muscle physiology understanding and opens avenues for real-time monitoring of respiratory muscles.