Objective Previously, we demonstrated that Amyloid Precursor Protein (APP) contributes to pathology in the SOD1G93A mouse model of ALS and that genetic ablation of APP in SOD1G93A mice significantly improved multiple disease parameters, including muscle innervation and motor neuron survival. We also observed elevated levels of potentially neurotoxic Aß peptides that have been implicated in Alzheimer’s Disease (AD) pathogenesis, within motor neurons and astrocytes in SOD1G93A mice. More recently, it has been shown that blocking Aß production improves outcome measures in SOD1G93A mice. The cyclodextrin, (2-Hydroxypropyl)-ß-cyclodextrin (HP-β-CD), has previously been shown to deplete intraneuronal unesterified cholesterol, resulting in effective reduction of Aß production and amelioration of disease progression in mouse models of AD and Niemann Pick Type C (NPC) disease. Here, we tested whether HP-β-CD could also improve phenotypic progression in SOD1G93A mice. Methods Pre-symptomatic male SOD1G93A mice were randomly assigned to the following treatment groups: HP-β-CD (4000mg/kg, n = 9) or vehicle (saline; n = 10), delivered by weekly subcutaneous injection, commencing at 67 days of age. Longitudinal grip-strength and body mass analysis was performed until late-stage disease (120 days of age), followed by in vivo bilateral isometric muscle tension analysis of tibialis anterior (TA) and extensor digitorum longus (EDL) muscles. Results: HP-β-CD administration had no effect on body mass or grip-strength compared to vehicle treated SOD1G93A mice. Similarly, HP-β-CD treatment had no effect on muscle force, contractile properties or motor unit number estimates (MUNE) at late-stage disease in SOD1G93A mice. Conclusion This study shows that HP-β-CD does not confer any therapeutic benefit in SOD1G93A mice. However, the absence of detrimental effects is informative, given the common use of cyclodextrins as complexing agents for other pharmaceutical products, their standalone therapeutic potential and the emerging association between dyslipidaemia and ALS progression.