Lake ice has a major impact on the functioning of lake ecosystems, the thermal and gas regimes of lakes, habitat conditions, socio-economic aspects of human life, local climate, etc. The multifaceted influence of lake ice makes it important to study its changes associated with global warming, including lake ice phenology, ice thickness, and the snow–ice fraction. This article presents a study of lake ice changes in different regions of Eurasia: the Arctic (Lake Imandra in the Murmansk region and Lake Kilpisjärvi in Finland), the temperate zone (six small and medium lakes in Karelia, Mozhaysk Reservoir in the Moscow region, and Lake Pääjärvi in Finland), the arid zone (Lake Ulansuhai in China), and the highlands (lakes Arpi and Sevan in Armenia). In the study regions, a statistically significant increase in winter air temperature has been recorded over the past few decades. The number of days with thaw (air temperature above 0 °C) has increased, while the number of days with severe frost (air temperature below −10 °C and −20 °C) has decreased. The share of liquid or mixed precipitation in winter increases most rapidly in the temperate zone. For two Finnish lakes, lakes Vendyurskoe and Vedlozero in Karelia, and Mozhaysk Reservoir, a decrease in the duration of the ice period was revealed, with later ice-on and earlier ice-off. The most dramatic change occurred in the large high-mountain Lake Sevan, where the water area has no longer been completely covered with ice every winter. In contrast, the small high-mountain Lake Arpi showed no significant changes in ice phenology over a 50-year period. Changes in the ice composition with an increase in the proportion of white ice and a decrease in the proportion of black ice have occurred in some lakes. In the temperate lakes Pääjärvi and Vendyurskoe, inverse dependences of the thickness of black ice on the number of days with thaw and frost in December–March for the first lake and on the amount of precipitation in the first month of ice for the second were observed. In the arid study region of China, due to the very little winter precipitation (usually less than 10 mm) only black ice occurs, and significant interannual variability in its thickness has been identified.
Read full abstract