Oxidative stress and inflammation play a pathogenic role in atherosclerosis. Thioredoxin-1 (Trx-1) is an anti-oxidative, anti-inflammatory protein with atheroprotective effects. However, in vivo cleavage of Trx-1 generates a truncated pro-inflammatory protein, Trx-80, which compromises the therapeutic use of Trx-1. Here we analysed whether the thioredoxin-mimetic peptide (TxMP), CB3 might exert anti-oxidative, anti-inflammatory, and atheroprotective effects in ApoE2.Ki mice. We synthesized a small TxMP, Ac-Cys-Pro-Cys-amide, CB3 and characterized its antioxidant and anti-inflammatory effects on cultured peritoneal murine macrophages. CB3 significantly and dose-dependently reduced the level of reactive oxygen species in lipopolysaccharides (LPS)-activated macrophages. In addition, it efficiently lowered LPS-induced inflammatory process through NF-κB inhibition, as evidenced by the reduced secretion of monocyte chemoattractant protein-1, interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α by macrophages. Nevertheless, CB3 did not affect cholesterol accumulation in macrophages. A daily-administered dose of 10 µg/g body weight CB3 to ApoE2.Ki mice on high fat diet did not affect plasma of total cholesterol and triglycerides levels but significantly reduced the plasma levels of pro-inflammatory cytokines (IL-33 and TNF-α) and oxidative markers. In contrast, it significantly induced the plasma levels of anti-inflammatory proteins (adiponectin, IL-10). In addition, CB3 reduced the number of pro-inflammatory M1 macrophages in spleen and decreased the ratio of M1/M2 macrophages in atherosclerotic lesion areas. Finally, CB3 significantly reduced the surface area of aortic lesions. Our results clearly showed that similar to the full length Trx-1, CB3 exerts protective effects, by reducing inflammation and oxidative stress in macrophages and in ApoE2.Ki mice. The atheroprotective effect of CB3 opens promising therapeutic approaches for treatment of atherosclerosis.
Read full abstract