Ethnopharmacological relevanceAsthma is the leading inflammatory disease of the airways with inadequate therapeutic options. ‘Malla Sindoor’ (MS) is a metal-based ethnomedicinal formulation that has been prescribed in the ancient traditional medicinal system for treating chronic inflammations. Aim of the studyHere, we validated the anti-inflammatory and anti-asthmatic properties of traditional metallic medicine MS in asthmatic mice model and in LPS stimulated human monocytic THP-1 cells, by examining the relevant cellular, biochemical and molecular intermediates. Materials and methodsScanning Electron Microscope (SEM), Electron Dispersive X-ray (EDX), and X-Ray Diffraction (XRD) were performed to characterize MS particles. Allergic asthma was induced in Balb/c mice through intraperitoneal ovalbumin (OVA) injection. Experimental groups include, normal control, disease control, Dexamethasone (2 mg/kg) and three MS treated groups: 4.3 mg/kg, 13 mg/kg, and 39 mg/kg. Quantitative PCR, inflammatory cytokines and anti-oxidant enzymes, and histological analysis were performed, in the treated mice and LPS stimulated human monocytic THP-1 cells for determining the MS efficacy. ResultsSEM image analysis showed the MS to be heterogenous in shape with a particle size distribution between 100 nm–1 μm. Elemental composition showed the presence of mercury (Hg), arsenic (As), and sulphur (S) along with other elements in the forms of mercury sulfide, arsenic trioxide, and their alloy crystals. OVA-challenge of the Balb/c mice resulted in the development of overt pathological features for allergic asthma including smooth muscle thickening and collagen deposition. Mice receiving MS-exhibited alleviation of allergic asthma features. BAL fluid analysis showed a decrease in the total cell count and decreases in neutrophils, monocytes, lymphocytes, and eosinophils. Further, the stimulated levels of interleukin (IL)-1β, −6, and TNF-α cytokines and antioxidant levels were also reduced upon MS-treatment. At the molecular level, MS-treatment reduced stimulated mRNA expression levels for IL-4, -5, -10, -13, -33, and IFN-γ cytokines. Histological analysis following MS-treatment of OVA-stimulated mice lungs showed a reduction in mucus accumulation in airways, decreases in peribronchial collagen deposition, bronchial smooth muscle thickening, and attenuation of inflammatory cell infiltration. In addition, under in-vitro conditions, MS-treatment attenuated the LPS induced secretion of IL-1β, −6, and TNF-α from THP-1 cells. ConclusionCollectively, the results suggest that MS acts as an effective anti-asthmatic and anti-inflammatory agent, by regulating various cellular, biochemical and molecular intermediates.