Abstract

We have recently shown that a dominant-negative mutant of CXCL8, dnCXCL8, with increased glycosaminoglycan (GAG) binding affinity and inactivated GPCR signaling function is able to efficiently prevent neutrophil infiltration into murine lungs (Adage et al., 2015). Here we present evidence that chemical PEGylation of dnCXCL8 with 20 kDa and 40 kDa PEG does not significantly interfere with GAG binding affinity, nor does it influence the mutant’s disabled chemotaxis function, while it strongly improved bioavailability and serum half-life of the chemokine mutant. In a murine model of lung inflammation, only the 40 kDa PEGylated dnCXCL8 showed a significant reduction of neutrophils in bronchoalveolar lavage (BAL) fluid. In combination with an almost three-fold increase (compared to non-PEGylated dnCXCL8) in plasma half-life after intravenous administration, our results prove that PEGylation of chemokine-derived biologics is an amenable way for the treatment of chronic inflammatory conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.