BackgroundSpinal cord injury (SCI) results in the partial or complete loss of movement and sensation below the level of injury. In individuals with cervical level SCI, there is a great need for voluntary command generation for environmental control, self-mobility, or computer access to improve their independence and quality of life. Brain-computer interfacing is one way of generating these voluntary command signals. As an alternative, this study investigates the feasibility of utilizing descending signals in the dorsolateral spinal cord tracts above the point of injury as a means of generating volitional motor control signals.MethodsIn this work, adult male rats were implanted with a 15-channel microelectrode array (MEA) in the dorsolateral funiculus of the cervical spinal cord to record multi-unit activity from the descending pathways while the animals performed a reach-to-grasp task. Mean signal amplitudes and signal-to-noise ratios during the behavior was monitored and quantified for recording periods up to 3 months post-implant. One-way analysis of variance (ANOVA) and Tukey’s post-hoc analysis was used to investigate signal amplitude stability during the study period. Multiple linear regression was employed to reconstruct the forelimb kinematics, i.e. the hand position, elbow angle, and hand velocity from the spinal cord signals.ResultsThe percentage of electrodes with stable signal amplitudes (p-value < 0.05) were 50% in R1, 100% in R2, 72% in R3, and 85% in R4. Forelimb kinematics was reconstructed with correlations of R2 > 0.7 using tap-delayed principal components of the spinal cord signals.ConclusionsThis study demonstrated that chronic recordings up to 3-months can be made from the descending tracts of the rat spinal cord with relatively small changes in signal characteristics over time and that the forelimb kinematics can be reconstructed with the recorded signals. Multi-unit recording technique may prove to be a viable alternative to single neuron recording methods for reading the information encoded by neuronal populations in the spinal cord.
Read full abstract