Understanding the impacts of microgravity on bacteria is vital for successful long duration space missions. In this environment, bacteria have been shown to become more virulent, more resistant to antibiotics and to regulate biofilm formation. Since the study of these phenomena under true microgravity is cost- and time challenging, the use of ground-based analogs might allow researchers to test hypotheses before planning and executing experiments in the space environment. We designed and developed a 2D clinostat with capabilities robust enough for bacterial studies to allow for multiple simultaneous replicates of treatment and control conditions, thus permitting the generation of growth curves, in a single run. We used computational fluid dynamics (CFD), biofilm growth measurement and differential gene expression analysis on Escherichia coli cultures grown to late exponential phase (24 h) to validate the system's ability to simulate microgravity conditions. The CFD model with a rotational speed of 8 rpm projected cells growing homogeneously distributed along the tube, while the static condition showed the accumulation of the cells at the bottom of the container. These results were empirically validated with cultures on nutrient broth. Additionally, crystal violet assays showed that higher biofilm biomass grew on the internal walls of the gravity control tubes, compared to the simulated microgravity treatment. In contrast, when cells from both treatments were grown under standard conditions, those exposed to simulated microgravity formed significantly more biofilms than their gravity counterparts. Consistent with this result, transcriptome analysis showed the upregulation of several gene families related to biofilm formation and development such as cells adhesion, aggregation and regulation of cell motility, which provides a potential transcriptional explanation for the differential phenotype observed. Our results show that when operated under parameters for simulated microgravity, our 2D clinostat creates conditions that maintain a proportion of the cells in a constant free-falling state, consistent with the effect of microgravity. Also, the high-throughput nature of our instrument facilitates, significantly, bacterial experiments that require multiple sampling timepoints and small working volumes, making this new instrument extremely efficient.