Abstract

A new tile-based pairwise analysis workflow, termed 1v1 analysis, is presented to discover and identify analytes that differentiate two chromatograms collected using comprehensive two-dimensional (2D) gas chromatography coupled with time-of-flight mass spectrometry (GC × GC-TOFMS). Tile-based 1v1 analysis easily discovered all 18 non-native analytes spiked in diesel fuel within the top 30 hits, outperforming standard pairwise chromatographic analyses. However, eight spiked analytes could not be identified with multivariate curve resolution-alternating least-squares (MCR-ALS) nor parallel factor analysis (PARAFAC) due to background contamination. Analyte identification was achieved with class comparison enabled-mass spectrum purification (CCE-MSP), which obtains a pure analyte spectrum by normalizing the spectra to an interferent mass channel (m/z) identified from 1v1 analysis and subtracting the two spectra. This report also details the development of CCE-MSP assisted MCR-ALS, which removes the identified interferent m/z from the data prior to decomposition. In total, 17 out of 18 spiked analytes had a match value (MV) > 800 with both versions of CCE-MSP. For example, MCR-ALS and PARAFAC were unable to decompose the pure spectrum of methyl decanoate (MVs < 200) due to its low 2D chromatographic resolution (∼0.34) and high interferent-to-analyte signal ratio (∼30:1). By leveraging information gained from 1v1 analysis, CCE-MSP and CCE-MSP assisted MCR-ALS obtained a pure spectrum with an average MV of 908 and 964, respectively. Furthermore, tile-based 1v1 analysis was applied to track moisture damage in cacao beans, where 86 analytes with at least a 2-fold concentration change were discovered between the unmolded and molded samples. This 1v1 analysis workflow is beneficial for studies where multiple replicates are either unavailable or undesirable to save analysis time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.