Abstract

Tile-based Fisher ratio (F-ratio) analysis is emerging as a versatile data analysis tool for supervised discovery-based experimentation using comprehensive two-dimensional (2D) gas chromatography coupled with time-of-flight mass spectrometry (GC × GC-TOFMS). None the less, analyte identification can often be marred by poor 2D resolution and low analyte abundance relative to overlapping compounds. Linear algebra-based chemometric methods, in particular multivariate curve resolution alternating least squares (MCR-ALS), parallel factor analysis (PARAFAC) and PARAFAC2, are often applied in an effort to address this situation. However, these chemometric methods can fail to produce an accurate spectrum when the analyte is at low 2D resolution and/or in low relative abundance. To address this challenge, we introduce class comparison enabled mass spectrum purification (CCE-MSP), a method that utilizes the underlying requirement for signal consistency of the background interference compounds between the two classes in the F-ratio analysis to purify the mass spectrum of the analyte hits. CCE-MSP is validated using a dataset obtained for a neat JP-8 jet fuel spiked with 14 sulfur containing compounds at two levels (15 ppm and 30 ppm), using the p-value and lack-of-fit (LOF) for each analyte hit as consistency metrics. A purified mass spectrum was produced for each spiked analyte hit and their mass spectrum match value (MV) was compared to the MV obtained by MCR-ALS, PARAFAC, and PARAFAC2. The resulting MV for CCE-MSP were found to be as good or better than these chemometric methods, eg., for 2-butyl-5-ethylthiophene with an analyte-to-interference relative signal abundance of 1:87 and a 2D resolution of 0.2, CCE-MSP produced a MV of 831, compared to 476 for MCR-ALS, 403 for PARAFAC, and 336 for PARAFAC2. CCE-MSP is also extended to obtain the purified spectrum for more than one analyte, eg., two analyte hits in overlapping hit locations. The spectra produced by CCE-MSP can also be utilized as estimates to facilitate quantitative signal decomposition using MCR-ALS.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call