The steelmaking-continuous casting process (SCCP) is a complex manufacturing process which exhibits the distinct features of process manufacturing. The SCCP involves a variety of production elements, such as multiple process routes, a wide array of smelting and auxiliary devices, and a variety of raw and auxiliary materials. The production-simulation of SCCP holds a natural advantage in being able to accurately depict the intricate production behavior involved, and this serves as a crucial tool for optimizing the production operation of the SCCP. This paper thoroughly considers the various production elements involved in the SCCP, such as the fluctuation of the converter smelting cycle, fluctuation of heat weight, and ladle operation. Based on the Plant Simulation software platform, a dynamic simulation model of the SCCP is established and detailed descriptions are provided regarding the design of an SCCP using dynamic-operation rules. Additionally, a dynamic operational control program for the SCCP is developed using the SimTalk language, one which ensures the continuous operation of the caster in the SCCP, using the discrete simulation platform. The effectiveness of the proposed dynamic simulation model is verified by the total completion time of the production plan, the transfer time of the heat among the different processes, and the frequency of ladle turnover. The simulation's results indicate that the dynamic simulation model has a satisfactory effect in simulating the actual production process. On this basis, the application effects of different schedules are compared and analyzed. Compared with a heuristic schedule, the optimized schedule based on the "furnace-machine coordinating" mode reduces the weighted value of total completion time by 8.7 min, reduces the weighted value of transfer waiting time by 45.5 min, and the number of rescheduling times is also reduced, demonstrating a better application effect and verifying the optimizing effect of the "furnace-machine coordinating" mode on the schedule.
Read full abstract