Abstract
In this paper, a comprehensive mathematical model is proposed for designing robust machine cells for dynamic part production. The proposed model incorporates machine cell configuration design problem bridged with the machines allocation problem, the dynamic production problem and the part routing problem. Multiple process plans for each part and alternatives process routes for each of those plans are considered. The design of robust cell configurations is based on the selected best part process route from user specified multiple process routes for each part type considering average product demand during the planning horizon. The dynamic part demand can be satisfied from internal production having limited capacity and/or through subcontracting part operation without affecting the machine cell configuration in successive period segments of the planning horizon. A genetic algorithm based heuristic is proposed to solve the model for minimization of the overall cost considering various manufacturing aspects such as production volume, multiple process route, machine capacity, material handling and subcontracting part operation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.