This research incorporates the nature of head movement made in listening activities, into the development of a quasi-binaural acoustical measurement technique for the evaluation of spatial impression. A listening test was conducted where head movements were tracked whilst the subjects rated the perceived source width, envelopment, source direction and timbre of a number of stimuli. It was found that the extent of head movements was larger when evaluating source width and envelopment than when evaluating source direction and timbre. It was also found that the locus of ear positions corresponding to these head movements formed a bounded sloped path, higher towards the rear and lower towards the front. This led to the concept of a signal capture device comprising a torso-mounted sphere with multiple microphones. A prototype was constructed and used to measure three binaural parameters related to perceived spatial impression-interaural time and level differences (ITD and ILD) and interaural cross-correlation coefficient (IACC). Comparison of the prototype measurements to those made with a rotating Head and Torso Simulator (HATS) showed that the prototype could be perceptually accurate for the prediction of source direction using ITD and ILD, and for the prediction of perceived spatial impression using IACC. Further investigation into parameter derivation and interpolation methods indicated that 21 pairs of discretely spaced microphones were sufficient to measure the three binaural parameters across the sloped range of ear positions identified in the listening test.
Read full abstract