BackgroundThe large-scale effort in developing, maintaining and making biomedical ontologies available motivates the application of similarity measures to compare ontology concepts or, by extension, the entities described therein. A common approach, known as semantic similarity, compares ontology concepts through the information content they share in the ontology. However, different disjunctive ancestors in the ontology are frequently neglected, or not properly explored, by semantic similarity measures.ResultsThis paper proposes a novel method, dubbed DiShIn, that effectively exploits the multiple inheritance relationships present in many biomedical ontologies. DiShIn calculates the shared information content of two ontology concepts, based on the information content of the disjunctive common ancestors of the concepts being compared. DiShIn identifies these disjunctive ancestors through the number of distinct paths from the concepts to their common ancestors.ConclusionsDiShIn was applied to Gene Ontology and its performance was evaluated against state-of-the-art measures using CESSM, a publicly available evaluation platform of protein similarity measures. By modifying the way traditional semantic similarity measures calculate the shared information content, DiShIn was able to obtain a statistically significant higher correlation between semantic and sequence similarity. Moreover, the incorporation of DiShIn in existing applications that exploit multiple inheritance would reduce their execution time.
Read full abstract