Photon number resolving detectors can be highly useful for studying the statistics of multi-photon quantum states of light. In this work we study the counts statistics of different states of light measured on multiplexed on-off detectors. We put special emphasis on artificial nonclassical features of the statistics obtained. We show new ways to derive analytical formulas for counts statistics and their moments. Using our approach we are the first to derive statistics moments for multi-mode thermal states measured on multiplexed on-off detectors. We use them to determine empirical Mandel parameters and recently proposed subbinomial parameters suitable for tests of nonclassicality of the measured states. Additionally, we investigate subpoissonian and superbunching properties of the two-mode squeezed state measured on a pair of multiplexed detectors and we present results of the Fano factor and second-order correlation function for these states.