Multidrug resistance (MDR) Klebsiella pneumoniae (K. pneumoniae) is a major emerging threat to human health, and leads to very high mortality rate. The effectiveness of colistin, the last resort against MDR Gram-negative bacteria, is significantly compromised due to the widespread presence of plasmid- or chromosome-mediated resistance genes. In this study, o-cymen-5-ol has been found to greatly restore colistin sensitivity in MDR K. pneumoniae. Importantly, this compound does not impact bacterial viability, induce resistance, or cause any noticeable cell toxicity. Various routes disclosed the potential mechanism of o-cymen-5-ol potentiating colistin activity against MDR K. pneumoniae. These include inhibiting the activity of plasmid-mediated mobile colistin resistance gene (mcr-1), accelerating lipopolysaccharide (LPS) − mediated membrane damage, and promoting the ATP-binding cassette (ABC) transporter pathway. To enhance the administration and bioavailability of o-cymen-5-ol, a nanoemulsion has been designed, which significantly improves the loading efficiency and solubility of o-cymen-5-ol, resulting in antimicrobial potentiation of colistin against K. pneumoniae infection. This study has revealed a new understanding of the o-cymen-5-ol nanoemulsion as a means to enhance the effectiveness of colistin against resistant factors. The finding also suggests that o-cymen-5-ol nanoemulsion could be a promising approach in the development of potential treatments for multidrug-resistant Gram-negative bacterial infections.
Read full abstract