Abstract

The treatment of sepsis caused by multidrug-resistant (MDR) Gram-negative bacterial infections remains challenging. With these pathogens exhibiting resistance to carbapenems and new generation cephalosporins, the traditional antibiotic polymyxin B (PMB) has reemerged as a critical treatment option. However, its severe neurotoxicity and nephrotoxicity greatly limit the clinical application. Therefore, we designed negatively charged high-density lipoprotein (HDL) mimicking nanodiscs as a PMB delivery system, which can simultaneously reduce toxicity and enhance drug efficacy. The negative charge prevented the PMB release in physiological conditions and binding to cell membranes, significantly reducing toxicity in mammalian cells and mice. Notably, nanodisc-PMB exhibits superior efficacy than free PMB in sepsis induced by carbapenem-resistant Acinetobacter baumannii (CRAB) strains. Nanodisc-PMB shows promise as a treatment for carbapenem-resistant Gram-negative bacterial sepsis, especially caused by Acinetobacter baumannii, and the nanodiscs could be repurposed for other toxic antibiotics as an innovative delivery system. Statement of significanceMultidrug-resistant Gram-negative bacteria, notably carbapenem-resistant Acinetobacter baumannii, currently pose a substantial challenge due to the scarcity of effective treatments, rendering Polymyxins a last-resort antibiotic option. However, their therapeutic application is significantly limited by severe neurotoxic and nephrotoxic side effects. Prevailing polymyxin delivery systems focus on either reducing toxicity or enhancing bioavailability yet fail to simultaneously achieve both. In this scenario, we have developed a distinctive HDL-mimicking nanodisc for polymyxin B, which not only significantly reduces toxicity but also improves efficacy against Gram-negative bacteria, especially in sepsis caused by CRAB. This research offers an innovative drug delivery system for polymyxin B. Such advancement could notably improve the therapeutic landscape and make a significant contribution to the arsenal against these notorious pathogens.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.