Although microbial fuel cells (MFCs) can produce renewable energy from wastewater, the generated power is practically unusable. To extract usable power from an MFC fed with wastewater, we newly developed a low voltage booster multiplier (LVBM), which is composed of a self-oscillating LVB and multistage voltage multiplier circuits (VMCs). The low output MFC voltage (ca. 0.4 V) was successfully boosted up to 99 ± 2 V, which was the highest voltage that has been ever reported, without voltage reversal by connecting an LVB with 20-stage VMCs. Moreover, the boosted voltage (81 ± 1 V) was stably maintained for > 40 h even after disconnecting the LVBM from the MFC. The energy harvesting efficiency of LVBM was > 80% when an LVB with 4-stage VMCs was charged to 9.3 V. These results clearly suggest that the proposed LVBM system is an efficient and self-starting energy harvester and storage for low-power generating MFCs.