The rapid move to digitalization and usage of online information systems brings new and evolving threats that organizations must protect themselves from and respond to. Monitoring an organization’s network for malicious activity has become a standard practice together with event and log collection from network hosts. Security operation centers deal with a growing number of alerts raised by intrusion detection systems that process the collected data and monitor networks. The alerts must be processed so that the relevant stakeholders can make informed decisions when responding to situations. Correlation of alerts into more expressive intrusion scenarios is an important tool in reducing false-positive and noisy alerts. In this paper, we propose correlation rules for identifying multi-stage attacks. Another contribution of this paper is a methodology for inferring from an alert the values needed to evaluate the attack in terms of the attacker’s skill level. We present our results on the CSE-CIC-IDS2018 data set.