Precision agriculture has recently experienced significant advancements through the use of technologies such as unmanned aerial vehicles (UAVs) and satellite imagery, enabling more efficient and precise agricultural management. Yield estimation from these technologies is essential for optimizing resource allocation, improving harvest logistics, and supporting decision-making for sustainable vineyard management. This study aimed to evaluate grape cluster numbers estimated by using YOLOv7x in combination with images obtained by UAVs from a vineyard. Additionally, the capability of several vegetation indices calculated from Sentinel-2 and PlanetScope satellites to estimate grape clusters was evaluated. The results showed that the application of the YOLOv7x model to RGB images acquired from UAVs was able to accurately predict grape cluster numbers (R2 value and RMSE value of 0.64 and 0.78 clusters vine−1). On the contrary, vegetation indexes derived from Sentinel-2 and PlanetScope satellites were found not able to predict grape cluster numbers (R2 lower than 0.23), probably due to the fact that these indexes are more related to vegetation vigor, which is not always related to yield parameters (e.g., cluster number). This study suggests that the combination of high-resolution UAV images, multispectral satellite images, and advanced detection models like YOLOv7x can significantly improve the accuracy of vineyard management, resulting in more efficient and sustainable agriculture.
Read full abstract