Abstract
AbstractAccurate, inexpensive and granular human poverty assessments are critical for data-driven policy decision-making. This research proposes a novel approach to computing poverty scores utilizing multispectral satellite images and indices calculated from census reference values. We show how this approach can leverage standard and sparse survey-based multidimensional poverty assessments at the municipal level to develop a deep learning architecture to obtain poverty scores at the residential block level. This method has the distinctive feature that the obtained inference corresponds to Multidimensional Measurement of Poverty generated by CONEVAL, the Mexican agency responsible for measuring poverty. We provide a reliable alternative to survey-based approaches with an $$R^2$$ R 2 of $$0.802\pm 0.022$$ 0.802 ± 0.022 for the lack of housing quality and spaces dimension. A convolutional neural network trained on multispectral satellite images and the lack of housing quality and spaces dimension, which is regressed from census reference variables corresponding to lack of water, electricity, sewage, concrete floor, toilet and occupancy level obtains an $$R^2$$ R 2 of 0.753. These results represent a significant step forward in including machine learning techniques to provide reliable information at reduced costs and a higher spatiotemporal frequency than traditional person-to-person surveys.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.