Video super-resolution aims to generate high-resolution video sequences with realistic details from existing low-resolution video sequences. However, most existing video super-resolution models require substantial computational power and are not suitable for resource-constrained devices such as smartphones and tablets. In this paper, we propose a lightweight video super-resolution (LightVSR) model that employs a novel feature aggregation module to enhance video quality by efficiently reconstructing high-resolution frames from compressed low-resolution inputs. LightVSR integrates several novel mechanisms, including head-tail convolution, cross-layer shortcut connections, and multi-input attention, to enhance computational efficiency while guaranteeing video super-resolution performance. Extensive experiments show that LightVSR achieves a frame rate of 28.57 FPS and a PSNR of 39.25 dB on the UDM10 dataset and 36.91 dB on the Vimeo-90k dataset, validating its efficiency and effectiveness.
Read full abstract