Abstract

Due to the light scattering and wavelength absorption in water, underwater images exhibit blurred details, low contrast, and color deviation. Existing underwater image enhancement methods are divided into traditional methods and deep learning-based methods. Traditional methods either rely on scene prior and lack robustness, or are not flexible enough resulting in poor enhancement effects. Deep learning methods have achieved good results in the field of underwater image enhancement due to their powerful feature representation ability. However, these methods cannot enhance underwater images with various degradations because they do not consider the inconsistent attenuation of different color channels and spatial regions. In this paper, we propose a novel asymmetric encoder-decoder network for underwater image enhancement, called CCM-Net. Concretely, we first introduce the prior knowledge-based encoder, which includes color compensation (CC) modules and feature extraction modules that consist of depth-wise separable convolution and global-local coordinate attention (GLCA). Then, we design a multi-scale feature aggregation (MFA) module to integrate shallow, middle, and deep features. Finally, we deploy a decoder to reconstruct the underwater images with the extracted features. Extensive experiments on publicly available datasets demonstrate that our CCM-Net effectively improves the visual quality of underwater images and achieves impressive performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.