Ice interfaces are pivotal in mediating key chemical and physical processes such as heterogeneous chemical reactions in the environment, ice nucleation, and cloud microphysics. At the ice surface, water molecules form a quasi-liquid layer (QLL) with properties distinct from those of the bulk. Despite numerous experimental and theoretical studies, a molecular-level understanding of the QLL has remained elusive. In this work, we use state-of-the-art quantum dynamics simulations with a realistic data-driven many-body potential to dissect the vibrational sum-frequency generation (vSFG) spectrum of the air/ice interface in terms of contributions arising from individual molecular layers, orientations, and hydrogen-bonding topologies that determine the QLL properties. The agreement between experimental and simulated spectra provides a realistic molecular picture of the evolution of the QLL as a function of the temperature without the need for empirical adjustments. The emergence of specific features in the experimental vSFG spectrum suggests that surface restructuring may occur at lower temperatures. This work not only underscores the critical role of many-body interactions and nuclear quantum effects in understanding ice surfaces but also provides a definitive molecular-level picture of the QLL, which plays a central role in multiphase and heterogeneous processes of relevance to a range of fields, including atmospheric chemistry, cryopreservation, and materials science.
Read full abstract