Economic load dispatch is a complex and significant problem in power generation. The inclusion of emission with economic operation makes it a Multi-objective economic emission load dispatch (MOEELD) problem. So it is a tough task to resolve a constrained MOEELD problem with antagonistic multiple objectives of emission and cost. Evolutionary Algorithms (EA) have been widely used for solving such complex multi-objective problems. However, the performance of EAs on such problems is dependent on the choice of the operators and their parameters, which becomes a complex issue to solve in itself. The present work is carried out to solve a Multi-objective economic emission load dispatch problem using a Multi-objective adaptive real coded quantum-inspired evolutionary algorithm (MO-ARQIEA) with gratifying all the constraints of unit and system. A repair-based constraint handling and adaptive quantum crossover operator (ACO) are used to satisfy the constraints and preserve the diversity of the suggested approach. The suggested approach is evaluated on the IEEE 30-Bus system consisting of six generating units. These results obtained for different test cases are compared with other reputed and well-known techniques.