Abstract

In this paper the bacteria foraging meta-heuristic is extended into the domain of multiobjective optimization. In this multiobjective bacteria foraging (MOBF) optimization technique, during chemotaxis a set of intermediate bacteria positions are generated. Next, we use pareto non-dominance criterion to determine final set of bacteria positions, which constitute the superior solutions among current and intermediate solutions. To test the efficacy of our proposed algorithm we have chosen a highly constrained optimization problem namely economic/emission dispatch. Economic dispatch is a constrained optimization problem in power system to distribute the load demand among the committed generators economically. Now-a-days environmental concern that arises due to the operation of fossil fuel fired electric generators and global warming, transforms the classical economic load dispatch problem into multiobjective environmental/economic dispatch (EED). In the proposed work, we have considered the standard IEEE 30-bus six-generator test system on which several other multiobjective evolutionary algorithms are tested. We have also made a comparative study of the proposed algorithm with that of reported in the literature. Results show that the proposed algorithm is a capable candidate in solving the multiobjective economic emission load dispatch problem.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call