Abstract

In this paper, a new hybrid optimization system is presented. Our approach integrates the merits of both ant colony optimization and steady state genetic algorithm and it has two characteristic features. Firstly, since there is instabilities in the global market and the rapid fluctuations of prices, a fuzzy representation of the economic emission load dispatch (EELD) problem has been defined, where the input data involve many parameters whose possible values may be assigned by the expert. Secondly, by enhancing ant colony optimization through steady state genetic algorithm, a strong robustness and more effectively algorithm was created. Also, stable Pareto set of solutions has been detected, where in a practical sense only Pareto optimal solutions that are stable are of interest since there are always uncertainties associated with efficiency data. Moreover to help the decision maker DM to extract the best compromise solution from a finite set of alternatives a Technique for Order Performance by Similarity to Ideal Solution (TOPSIS) method is adopted. It is based upon simultaneous minimization of distance from an ideal point (IP) and maximization of distance from a nadir point (NP). The results on the standard IEEE systems demonstrate the capabilities of the proposed approach to generate true and well-distributed Pareto optimal nondominated solutions of the multiobjective EELD.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call