The cascaded H-bridge (CHB) inverter is one of the most attractive multilevel topologies for renewable energy applications. Due to the fact that CHB inverters employ a large number of components, they suffer from a higher probability of fault, which reduces the system reliability. A fault-tolerant operation for a CHB inverter is described in this article. New features ensure reliable and robust operation of the converter in the event of a fault. The proposed strategy uses an additional cross-coupled CHB (X-CHB) unit in companion with the existing CHB units to support the output voltage and ensure continuity of operation in the event of an open/short-circuit fault. The operation of the proposed X-CHB inverter is described in detail. Simulation and experimental verification of the proposed concept are demonstrated using a seven-level CHB. Both simulation and experimental results confirm the fault-tolerant operation of the X-CHB for a battery energy storage system in case of switch faults.
Read full abstract