The fruit supply chain requires simple, non-destructive, and fast tools for quality evaluation both in the field and during the post-harvest phase. In this study, a portable visible and near-infrared (Vis/NIR) spectrophotometer and a portable Vis/NIR hyperspectral imaging (HSI) device were tested to highlight genetic differences among apricot cultivars, and to develop multi-cultivar and multi-year models for the most important marketable attributes (total soluble solids, TSS; titratable acidity, TA; dry matter, DM). To do this, the fruits of seventeen cultivars from a single experimental orchard harvested at the commercial maturity stage were considered. Spectral data emphasized genetic similarities and differences among the cultivars, capturing changes in the pigment content and macro components of the apricot samples. In recent years, machine learning techniques, such as artificial neural networks (ANNs), have been successfully applied to more efficiently extract valuable information from spectral data and to accurately predict quality traits. In this study, prediction models were developed based on a multilayer perceptron artificial neural network (ANN-MLP) combined with the Levenberg-Marquardt learning algorithm. Regarding the Vis/NIR spectrophotometer dataset, good predictive performances were achieved for TSS (R2 = 0.855) and DM (R2 = 0.857), while the performance for TA was unsatisfactory (R2 = 0.681). In contrast, the optimal predictive ability was found for models of the HSI dataset (TSS: R2 = 0.904; DM: R2 = 0.918, TA: R2 = 0.811), as confirmed by external validation. Moreover, the ANN allowed us to identify the most predictive input spectral regions for each model. The results showed the potential of Vis/NIR spectroscopy as an alternative to traditional destructive methods to monitor the qualitative traits of apricot fruits, reducing the time and costs of analyses.
Read full abstract