Mueller matrix imaging polarimetry (MMIP) is a promising technique for investigating structural abnormalities in pathological diagnosis. The characterization stability of polarization signatures, described by Mueller matrix parameters (MMPs), correlates with the mechanical state of the biological medium. In this study, we developed an MMIP system capable of applying quantitative forces to samples and measuring the resulting polarization signatures. Mechanical stretching experiments were conducted on a mimicking phantom and a tissue sample at different force scales. We analyzed the textural features and data distribution of MMP images and evaluated the force effect on the characterization of MMPs using the structural similarity index. The results demonstrate that changes in the mechanical microenvironment (CMM) can cause textural fluctuations in MMP images, interfering with the stability of polarization signatures. Specifically, parameters of anisotropic orientation, retardance, and optical rotation are the most sensitive to CMM, inducing a dramatic change in the overall image texture, while other parameters (e.g., polarization, diattenuation, and depolarization) exhibit locality in their response to CMM. For some MMPs, CMM can enhance regional textural contrasts. This study elucidates the mechanical stability of polarization signatures in biological tissue characterization and provides a valuable reference for further research toward minimizing CMM influence.