Ship detection is a significant issue in remote sensing based on Synthetic Aperture Radar (SAR). This paper combines the advantages of a steady constant false alarm rate (CFAR) detector and a knowledge-oriented Gradient Boosting Decision Tree (GBDT) classifier to achieve the location and the classification of ship candidates. The steady CFAR detector smooths the image by a moving-average filter and models the probability distribution of the smoothed clutter as a Gaussian distribution. The mean and the standard deviation of the Gaussian distribution are estimated according to the left half of the histogram to remove the effect of land, ships, and other targets. From the Gaussian distribution and a preset constant false alarm rate, a threshold is obtained to segment land, ships, and other targets from the clutter. Then, a series of morphological operations are introduced to eliminate land and extract ships and other targets, and an active contour algorithm is utilized to refine ships and other targets. Finally, ships are recognized from other targets by a knowledge-oriented GBDT classifier. Based on the brain-like ship-recognition process, we change the way of the decision-tree generation and achieve a higher classification performance than the original GBDT. The results on the AIRSARShip-1.0 dataset demonstrate that this scheme has a competitive performance against deep learning, especially in the detection of offshore ships.