Vocal biomarkers, derived from acoustic analysis of vocal characteristics, offer noninvasive avenues for medical screening, diagnostics, and monitoring. Previous research demonstrated the feasibility of predicting type 2 diabetes mellitus through acoustic analysis of smartphone-recorded speech. Building upon this work, this study explores the impact of audio data compression on acoustic vocal biomarker development, which is critical for broader applicability in health care. The objective of this research is to analyze how common audio compression algorithms (MP3, M4A, and WMA) applied by 3 different conversion tools at 2 bitrates affect features crucial for vocal biomarker detection. The impact of audio data compression on acoustic vocal biomarker development was investigated using uncompressed voice samples converted into MP3, M4A, and WMA formats at 2 bitrates (320 and 128 kbps) with MediaHuman (MH) Audio Converter, WonderShare (WS) UniConverter, and Fast Forward Moving Picture Experts Group (FFmpeg). The data set comprised recordings from 505 participants, totaling 17,298 audio files, collected using a smartphone. Participants recorded a fixed English sentence up to 6 times daily for up to 14 days. Feature extraction, including pitch, jitter, intensity, and Mel-frequency cepstral coefficients (MFCCs), was conducted using Python and Parselmouth. The Wilcoxon signed rank test and the Bonferroni correction for multiple comparisons were used for statistical analysis. In this study, 36,970 audio files were initially recorded from 505 participants, with 17,298 recordings meeting the fixed sentence criteria after screening. Differences between the audio conversion software, MH, WS, and FFmpeg, were notable, impacting compression outcomes such as constant or variable bitrates. Analysis encompassed diverse data compression formats and a wide array of voice features and MFCCs. Wilcoxon signed rank tests yielded P values, with those below the Bonferroni-corrected significance level indicating significant alterations due to compression. The results indicated feature-specific impacts of compression across formats and bitrates. MH-converted files exhibited greater resilience compared to WS-converted files. Bitrate also influenced feature stability, with 38 cases affected uniquely by a single bitrate. Notably, voice features showed greater stability than MFCCs across conversion methods. Compression effects were found to be feature specific, with MH and FFmpeg showing greater resilience. Some features were consistently affected, emphasizing the importance of understanding feature resilience for diagnostic applications. Considering the implementation of vocal biomarkers in health care, finding features that remain consistent through compression for data storage or transmission purposes is valuable. Focused on specific features and formats, future research could broaden the scope to include diverse features, real-time compression algorithms, and various recording methods. This study enhances our understanding of audio compression's influence on voice features and MFCCs, providing insights for developing applications across fields. The research underscores the significance of feature stability in working with compressed audio data, laying a foundation for informed voice data use in evolving technological landscapes.